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AsmGofer [12] is an advanced Abstract State Machine (ASM) [2] programming
system. It is an extension of the functional programming language Gofer [9]
which is similar to Haskell [14]. More precisely, AsmGofer introduces a notion
of state and parallel updates into TkGofer [15] and TkGofer extends Gofer to
support graphical user interfaces.

AsmGofer has been used successfully for several applications. For instance,
Java and the Java Virtual Machine [13], the Light Control Case Study [3], Sim-
ulating UML Statecharts [5].

In this document we introduce the AsmGofer programming environment. We
assume basic knowledge in functional programming, like algebraic data types,
functional expressions, and pattern matching. For an introduction into func-
tional programming we refer the reader to [I, 16]. This document is not a
reference manual for AsmGofer.

In Section 1 we briefly explain the Gofer command line interface for loading,
editing, and running examples. Section 2 and Section 3 introduce the notations
and constructs for sequential and distributed ASMs in AsmGofer. In Section 4
we use sequential ASMs to define the well-known Game of Life example. For this
example, we show in Section 5 how our GUI generator works, and in Section 6
we define a customized GUI for the game. Finally, Section 7 concludes this
document with a summary.

1 The interpreter

Gofer and AsmGofer are interpreters. In this section we describe the command
line interface of Gofer and AsmGofer. After starting AsmGofer, the output
looks as follows:

=== AsmGofer (TkGofer v2.0) ===

AsmGofer Version 1.1 (c) Joachim Schmid 1999-2001

(with modules: guiMonad, widget, time, io, concurrent, asmvar)
Gofer Version 2.30a Copyright (c) Mark P Jones 1991-1994



Reading script file "AsmGofer/Preludes/tk.prelude-all-asm":
Gofer session for:
AsmGofer/Preludes/tk.prelude-all-asm

Type :7 for help
?

At startup the system reads a prelude file where all library functions (map,
head, tail, fst, ...) are defined. We use the prelude tk.prelude-all-asm. The
Gofer system is ready for new commands when the ? prompt occurs. One can
now evaluate arbitrary expressions, load and edit files, load projects, and find
function and type definitions. In the following subsections we explain these
features of the command line.

1.1 Expression evaluation

Expressions can be evaluated in Gofer using the command line. For instance,
typing 5+2 and pressing the enter key results in 7 being displayed.

7 5+2

7

(3 reductions, 7 cells)
?

The Gofer system evaluates the expression and reports the result together with
information about the used cells! and reduction steps. This information gives
an impression about the complexity and size of the evaluation. Another short
example is the sum of squares of numbers from one to ten.

7 sum (map (\x -> x*x) [1..10])
385

(124 reductions, 185 cells)
?

When the user enters an expression, Gofer first tries to typecheck it. If the
expression has a unique type, then Gofer evaluates the expression, otherwise
a type error is reported. For example, consider the wrongly typed expression
5+"Hello".

? 5+"Hello"

ERROR: Type error in application
*%* expression : 5 + "Hello"
*kk term : 5

**kk type : Int

**%* does not match : [Char]

?

LA cell is a synonym for head element.



1.2 Dealing with files

The command line can be used to evaluate expressions, but not to provide
definitions. Functions and types can be defined only in files (also called scripts).
The command :1 filename.gs loads the file filename.gs. File names do not
have to end with .gs, but this is a usual extension for gofer scripts. The :1
command removes all definitions of previously loaded files except the definitions
in the prelude file. To append definitions contained in another file file2.gs, the
command :a file2.gs can be used.

If a file is modified, then :r reloads all dependant files. In case there is a
syntax or a type error, the interpreter shows the file name and the line number
where the error occurred. Typing :e opens an editor with the corresponding file
at the corresponding line number. The editor used by Gofer can be determined
in the environment variables EDITOR and EDITLINE.

Especially for many files, it is cumbersome to load files with the :a com-
mand. Therefore Gofer supports so-called project files; each line in a project file
contains a file name. The files in file.p are loaded by :p file.p in the order in
which they appear in file.p. The reload command :r works for projects, too.
Additionally, an arbitrary file can be edited by typing :e filename.gs.

1.3 Other commands

As already mentioned, Gofer typechecks every expression. Furthermore, the in-
terpreter supports a command to print the type of a given expression. Consider
the input :t "Hello".

7?7 :t "Hello"
"Hello" :: String
?

The command :t determines the type and prints it to standard output. The
operator :: separates the type information from the expression. In our case the
type is String. Additional information will be displayed by typing :i String.

? :i String
-- type constructor

type String = [Char]
?

Now Gofer tells us, that String is an alias for [Char] which is a list of characters.
Gofer remembers the file name and line number for each function and type
definition. Entering :f sum instructs Gofer to open the editor with the corre-
sponding file and to jump to the position where sum is defined.
The command to quit the interpreter is :q.

? :q
[Leaving Gofer]
joe: >



Gofer supports several other commands. Typing : 7 prints a list of known com-
mands and short descriptions. For further information we refer the reader to
the Gofer manual which is included in the AsmGofer distribution [12].

2 Sequential ASMs

Encoding ASMs in a purely functional programming language like Gofer seems
to be a contradiction on terms, because a pure functional language has no side-
effects, whereas each ASM update has a main-effect on the global state. In fact,
AsmGofer is not Gofer with additional definitions in Gofer to support ASMs.
Rather, AsmGofer modifies the evaluation machine in the Gofer run-time system
to support a notion of state. On the other hand, we do not change the Gofer
syntax and therefore we have to represent the ASM features as expressions.
We provide special functions and operators to define dynamic functions and to
perform updates, as we are going to explain in this section.

2.1 Nullary dynamic functions

Since we do not provide any special ASM syntax, we have to represent a dynamic
function as an ordinary functional term. For this purpose, the prelude contains
a function initVal with the following signature (see below for an explanation of
Eq):

mnitVal:: Eqa = String — a — a

With this function we can create a 0-ary dynamic function f by the following
definition:

f = nitVal "name" init

The first argument "name" is a name for the dynamic function which is used
only in error messages. Due to technical reasons in the Gofer implementation,
we cannot access the function name f as given by the lefthand-side expression of
the function definition. The second argument init is the initial value for f. The
initVal function is defined in such a way, that the return type of the function
is equal to the type of the initial value, as can be seen from the signature
declaration above.

In Gofer there is no need to define function signatures for function defini-
tions. Usually, Gofer can deduce the types. However, we suggest to define the
signatures anyway, because this enhances the readability of type error reports
by Gofer. To improve readability we further suggest to write signatures for
dynamic functions with the type alias Dynamic:

type Dynamict =t

Note that this definition of Dynamic implies that there is no semantic difference
between a type A and Dynamic A. Dynamic is added only for better readability.



A declaration of a dynamic function may then look as follows:

f: Dynamic Int
f=initVal "£" 0

The notation Eqa = ... in the signature for initVal means that the type a
must be an instance of type class Eq. We refer the reader to [7] for a discussion
of type classes. In the following we use the term class as an alias for type class.
Being an instance of Fq implies that the equality operator == is defined for
that type. AsmGofer needs this operator for the consistency check of updates,
namely to determine whether two values are equal. All basic types in AsmGofer
are already defined as an instance of class Eq and for all user-defined types, the
user has to provide the corresponding definition. Alternatively, one can define
a type to be an instance of the class AsmTerm (defined in the prelude), which
makes it an instance of class Fq using the type class features of Gofer. For more
information about type classes in Gofer, we refer the reader to [8].

data MyType = ...
instance AsmTerm MyType

For AsmGofer, a dynamic function behaves similarly to other functions. For
instance, we can enter f in the command line to evaluate the function:

7 f
0

(5 reductions, 19 cells)
7

In our definition of f we defined zero as the initial value for the dynamic function.
It is also possible to use the special predefined expression asmDefault, which
corresponds to an undefined value for each type, defined as an instance of class
AsmTerm:

asmDefault:: AsmTerm a = a
We can now use this undefined value to define the dynamic function f:

f = Dynamic Int
f = initVal "£" asmDefault

This undefined value is not an implementation of the value undef of the Li-
pari Guide [6]. In particular, AsmGofer can not use this undefined value in
computations. Therefore, whenever an expression evaluates to asmDefault, As-
mGofer stops the computation and reports an error message. Note that Gofer
uses lazy evaluation [11] which implies that expressions are evaluated only when
necessary.



7 f
(5 reductions, 18 cells)
ERROR: evaluation of undefined ’asmDefault’

**%* dynamic function: "f"
?

However, it is possible to specify for any type an own undefined value. For
example we could define 0 as the undefined value for expressions of type Int, as
in the following instance definition.

instance AsmTerm Int where
asmDefault =0

This definition implies that 0 and asmDefault are treated as equal. This will be
become more interesting for unary dynamic functions as discussed in the next
subsection.

The above kind of undefined is more flexible than the undefined in the Lipari
Guide, where undefined is treated like an ordinary value which can be used in
computations. In AsmGofer one can use the predefined asmDefault expression
where a computation is abrupted whenever this expression occurs, but one can
also define an element which should be used instead of undefined.

2.2 Unary dynamic functions

We provide a function initAssocs which can be used to define unary dynamic
functions.

initAssocs:: (AsmOrd a, Eq b) = String — [(a, b)] — Dynamic(a — b)

The first argument is the name for the dynamic function, which is used only
in error messages. The second argument is an initialization list. If this list is
empty, then the dynamic function is undefined (in the sense above) for each
argument. In the type signature for initAssocs we can see that type a must
be an instance of class AsmOrd and b an instance of class Fq. Requiring b
to be an instance of Fq allows one to determine whether two values are equal
when checking the consistency of updates. Requiring a to be an instance of
AsmOrd is used to compare two arguments. The equality operator would be
sufficient, but we can implement unary dynamic functions more efficiently using
binary search, if there is an ordering on the argument type. The class AsmOrd
is defined as follows.

class AsmOrd a where
asmCompare: a — a — Int

The function asmCompare returns for two arguments either —1, 0, or 1 de-
pending on whether the first argument is less than, equal to, or greater than
the second argument. If we define a type as an instance of AsmTerm, then it
automatically becomes an instance of class AsmOrd.



Similarly to nullary dynamic functions we can introduce unary dynamic
functions, but using initAssocs instead of init Val.

g Dynamic(Int — Int)
g = initAssocs "g" [(0,1),(1,1)]

The function g can be used like other unary functions, except when the function
should be evaluated for an argument which is not in the domain of the func-
tion. In that case, AsmGofer uses the expression asmDefault already introduced
above.

7gl1

1

(6 reductions, 16 cells)

7g?2

(4 reductions, 15 cells)

ERROR: evaluation of undefined ’asmDefault’

*x* dynamic function: "g"
?

Additionally, AsmGofer supports some other functions to determine the do-
main and the range of unary dynamic functions, to check whether an expression
is in the domain of a function, and to compute the current association list
(function represented as a finite mapping).

dom  : Ord a = Dynamic(a — b) — {a}
ran  : Ord b = Dynamic(a — b) — {b}
inDom :: a — Dynamic(a — b) — Bool
assocs : Dynamic(a — b) — [(a, )]

The predefined Gofer class Ord defines the operators <, <,>,>. The type {a}
is the type corresponding to the power set of type a similar to the list type
[a] except that there are no duplicate values. The requirements on class Ord
are used to sort the expressions in a set. The domain of a dynamic function
only contains those expressions which are mapped to a value different from the
undefined element for the corresponding type.

2.3 Update operator

Up to now we introduced nullary and unary dynamic functions. Now the ques-
tion arises how we can update dynamic functions. As usual in ASMs we provide
the := operator.

(:=)= AsmTerm a = a — a — Rule ()

The operator takes two arguments of the same type (which must be an instance
of AsmTerm) and returns something of the special type Rule (). We use this
type to represent rules. Additionally, we use the do notation for monads [11] in



Gofer to denote parallel execution of rules. The do notation and monads [17]
are not described in this chapter, because this would explode this introduction.
Roughly spoken, the do notation for rules in AsmGofer can be viewed as taking
a set of rules and combining them to one rule as in the example below for
someUpdate.

someUpdate :: Rule ()
someUpdate = do
f =5
g2:=T+f

The other basic rule is the skip rule which has the empty set as update set.
skip:: Rule ()

This skip rule is especially useful in if-then-else expressions when no else part
is needed.

someOtherUpdate :: Rule ()
someOtherUpdate =
if f == 2 then
g2:=T+f
else skip

2.4 N-ary dynamic functions

We do not provide syntax for dynamic functions with arity greater than one.
However, such dynamic function can be represented as a unary dynamic function
by using a tuple for the arguments. Additionally, one can define an auxiliary
dynamic function as illustrated in the following example for a 2-ary dynamic
function g:

g—auz:: Dynamic((Int, String) — String)
g—auzx = initAssocs "g" some_init

g Int — String — String
gis=g_auzx(i,s)

The function ¢ is a 2-ary function. We can use g to access the values of g_auz.
On the other hand, we can also use g to update the dynamic function ¢g_auz,
because g i s and g_auz(i, s) are treated equally by AsmGofer.

my_updates:: Rule ()
my_updates = do

g5 "great" := "hello"

g7 "other" := g3 "strange"



2.5 Execution of rules

In the previous subsections we defined dynamic functions and updates to them.
The question is how to execute the updates and especially, what to do with the
type Rule () 7 Expressions of type Rule () correspond to rules and have a side-
effect on the global state. Gofer supports IO actions [10] of type IO (), which
are used to perform input-output-operations like printing a string on standard
output. Printing a string is a side-effect. In Gofer, this side-effect is implemented
by a primitive function which on evaluation prints the corresponding string on
standard output. The monad ensures that the function must be evaluated in
order to proceed. We use the same technique to define primitive functions having
a side-effect on a global state to implement dynamic functions. However, to
distinguish in the type system between IO actions and rules, we use an abstract
type Rule and we provide the following functions to transform expressions of
type Rule () into 10 actions which can be executed by the Gofer interpreter.

fire = Int — Rule () — 10 ()
firel = Rule () — 10()
fireWhile :: Bool — Rule () — IO ()
fireUntil :: Bool — Rule () — IO ()
fixpoint = Rule () — IO ()

The first function fire takes two arguments. The first argument is the number
of steps to execute the rule specified by the second argument.

? fire 2 someUpdate
2 steps

(102 reductions, 228 cells)
?

The firel function is a specialization of fire where the number of steps to execute
is fixed to 1. The fire While and fireUntil functions take a condition and a rule
as arguments and fire while or until the condition holds. The fizpoint function
fires its argument as long as the resulting update set is not empty.

Execution of rules is possible only if the corresponding update set is consis-
tent. An update set is inconsistent if it contains updates to assign two different
values to the same location.

? firel (do f :=1; f := 2)
(22 reductions, 60 cells)
ERROR: inconsistent update

*** dynamic function : "f"
**x*% expression (new) : 2
*x* expression (old) : 1
?



2.6 Rule combinators

The Lipari Guide [06] introduces several rules like import, extend, choose, and
var over. We have implemented forall, choose, and create where forall corre-
sponds to var over and create to the import rule in the Lipari Guide. The result
type of the rule combinators in this subsection is always Rule ().

Our forall rule takes a range constraint similar to list comprehension in Gofer
and a rule to execute.

forall i — dom(g) do
gi:=gi+1
In this example the rule body is executed for each 7 in the domain of g. It is

also possible to loop over several variables.

forall i — dom(g),j < {1..10} do
h(i,j) = gi+

On the other hand, the choose rule below chooses one ¢ in the domain of g and
executes the body. If the domain of g is empty, then the rule is equivalent to
skip.

choose i «+ dom(g) do
f=f+gi

We provide an alternative choose rule where we can determine with an ifnone
clause what should happen when the range constraint is empty.

chooselfNone i — dom(g) do

f=f+g:i
ifnone
f=0

In this example the update f := 0 is performed if the domain of g is empty,
otherwise an element in the domain is chosen as in the choose rule above.

The Lipari Guide [6] supports an import rule which takes anonymous el-
ements from a special universe reserve. Imported elements are no longer in
that universe and no element of reserve is an element of any other universe.
In AsmGofer we want to support something similar. However, it is difficult to
implement the semantics of the import rule according to the Lipari Guide in a
functional language with algebraic data types. Therefore, we provide a create
rule which can be used to deal with anonymous elements. The rule only ensures
that a “created” expression was never created previously by a create rule, and
if two create rules are executed in parallel, then both elements are different.
Consider the following example for creating heap references.

create ref do
heap(ref) := Object(..)

10



The create rule works for expressions of type Int. When the necessity arises to
use the create rule for a type different from Int, then we have to define this type
as an instance of the following type class Create.

class Create a where
createElem:: Int — a

When defining a type a as an instance of class Create we must provide an
implementation for the createElem function. This function expects an integer
value as its argument and transforms it to an expression of the corresponding
type a. It is important, that the definition of createElem is an injective function.
Otherwise the create rule does not “create” always different elements of the
corresponding types.

instance Create MyType where
createElem i = . ..

Sometimes it is useful to choose one rule among a set of rules. For that
reason we provide the choose among rule.

choose among

f=f+1
f=f+2
f=f+3

In [4] the concepts of sequential execution and iteration of rules is introduced.
Both concepts are implemented in AsmGofer by the functions seq and iterate.

seq i Rule () — Rule () — Rule ()
iterate :: Rule () — Rule ()

The result of seq is the sequential execution of the argument rules. The second
rule is executed in the intermediate state established by the first rule. The
iterate construct is similar to the fixpoint function in the previous subsection,
except that the result is a rule and not an IO action. Note also, that intermediate
states are not visible to other rules. Both constructs are atomic and executed
in one step.

3 Distributed ASMs

In the previous section we described constructs for sequential ASMs. In the
Lipari Guide [0] there is also a definition for distributed (or multi agent) ASMs.
In sequential ASMs there is one agent firing always the same set of rules. In a
distributed ASM there are several agents firing rules. Furthermore, the set of
active agents might be dynamic.

In our implementation of multi agent ASMs we can define for each agent a
rule to execute. Such a rule gets as its first argument (self in the example in

11



Figure 1 Dining philosophers

type AgentRule a = a — Rule ()

type Philosopher = Int

data Fork = Up(Philosopher) | Down
data Mode Think | Eat

instance AsmTerm Fork where
asmDefault = Down

instance AsmTerm Mode where
asmDefault = Think

fork :: Dynamic(Philosopher — Fork)
fork = initAssocs "fork" []

mode :: Dynamic(Philosopher — Mode)
mode = initAssocs "mode" []

phils:: Dynamic(Philosopher — AgentRule Philosopher)
phils = initAssocs "phils" [(phl, ezec), (ph2, ezec), .. ]

exec:: AgentRule Philosopher

ezec self =
if mode(self) == Think A lfork == Down A rfork == Down then do
Ifork := Up(self)
rfork := Up(self)

mode(self) := Eat
else if mode(self) == Eat then do

Ifork := Down

rfork := Down

mode(self) := Think
else skip

where lfork = fork(self)
rfork = fork(right)
right = (self + 1) ‘mod’ card(dom(phils))

12



Fig. 1) the agent which executes the rule. For instance, consider the definitions
for the well known Dining Philosophers problem in Fig. 1 where each philosopher
is an agent. In the figure the functions fork and mode are dynamic functions
parametrized over a philosopher. It is important that we parametrize the Up
constructor over a philosopher, too. Otherwise we do not know which fork is
used by which philosopher. The dynamic function phils assigns to a philosopher
the exec rule. In our case each philosopher executes the same rule.

We provide a special function multi with the following signature to execute
agents.

multi : Dynamic(a — AgentRule a) — Rule ()

This function takes as its argument a dynamic function like the function phils
in Fig. 1. The function result is a rule. The implementation of multi chooses
non-deterministically a subset of the domain of phils and executes in parallel
for each element in this subset the corresponding rule. This could be described
by the following pseudo rule.

multi actions =
forall act « some_subset(dom(actions)) do
(actions act)(act)

Note that not necessarily all agents execute the same rule as in our example. It
is important that multi never chooses a subset which leads to an inconsistent
update. This is useful in particular for our example, because the rule

multi phils

never chooses a set of philosophers where a fork is shared by two philosophers,

because then we would get an inconsistent update for the dynamic function
fork.

4 An example: Game of Life

In this section we briefly introduce Conway’s well-known Game of Life and
then we show how to formulate the static and dynamic semantics in AsmGofer.
Figure 2 shows a typical pattern of this game. The game consists of a n X m
matrix; each cell is either alive or dead. The rules for survival, death and birth
are as follows (see [18]):

e Survival: each living cell with two or three alive neighbors survives until
the next generation.

e Death: each living cell with less than two or more than three neighbors
dies.

e Birth: each dead cell with exactly three living neighbors becomes alive.

In the following two subsections we illustrate the use of AsmGofer by means
of the Game of Life example. We define the static and dynamic semantics.

13



Figure 2 Conway’s Game of Life

4.1 Static semantics

The definitions in this subsection are ordinary Gofer definitions. In the next
subsection when presenting the dynamic semantics we use constructs which are
available only in AsmGofer.

Each cell in the matrix is either alive or dead and therefore we define a type
State consisting of the two constructors Dead and Alive.

data State = Dead | Alive

Both constructors can be viewed as nullary functions creating elements of type
State. Note that in Gofer, type names and constructor names must always start
with an upper case letter. Functions on the other hand with a lower case letter.

For the representation of cells we use pairs of integer values and we define a
type Cell as an alias for them.

type Cell = (Int, Int)

Further, we define a nullary function ¢N to denote the number of columns
and rows. In order to loop later through all possible cells, we define a function
computing such a list. In the definition below we use the concept of list compre-
hension. The function result is a list of pairs (4, 7) where ¢ and j range from 0 to
¢N —1. The order in the list is as follows: [(0,0), (0,1),...,(0,cN—1),(1,0),...].

cN: Int
cN =8
cells:: [Cell]

cells = [(i,7) | © < [0..cN —1],j « [0..cN —1]]

In the rules for Game of Life we need for each cell the number of alive
neighbors. A cell has at most 8 neighbors. The following definition computes a

14



list of tuples (i’,5’) where (i’,5’) is a neighbor different from (é,5) and a valid
position in the game.

neighbors:: Cell — [Cell]
neighbors(i,7) = [(¢',5") | i/ «— [i — 1..i+ 1], <« [j — 1.7 + 1],
(4,5) # (¢, 7"), valid i, valid j']
where valid i = ¢ € [0..cN — 1]

With the definition of neighbors, we can define the number of alive neighbors.
This is the length of the list neighbors restricted to those elements which are
alive.

aliveNeighbors:: Cell — Int
aliveNeighbors cell = length([c | ¢ < neighbors cell, status ¢ == Alive])

For the time being, let us assume there is a function status with the signature
below. In the next subsection we will define status as a dynamic function, since
it may change its value during execution.

status:: Cell — State

4.2 Dynamic semantics

In this subsection we describe the dynamic semantics of the game in terms of
ASMs. To do this, we first have to store for each cell whether it is alive or dead.
Therefore we use a unary dynamic function status initialized with state Dead
for each cell.

status:: Dynamic(Cell — State)
status = initAssocs "status" [(¢, Dead) | ¢ «— cells]

instance AsmTerm State

Now we can define two rules letDie and letLive for the behavior of a cell
with n alive neighbors. Both rules correspond to the last two rules (Death and
Birth) at the beginning of this section. The first rule Survival is automatically
established by ASM semantics. Since everything must be an expression in Gofer
(as already stated), we can not omit the else branch in the following definitions.

letDie:: Cell — Int — Rule ()
letDie cell n =
if status cell == Alive A (n <2V n > 3) then
status cell := Dead
else skip

letLive:: Cell — Int — Rule ()
letLive cell n =
if status cell == Dead N n == 3 then
status cell := Alive
else skip

15



It remains to execute both rules for all possible cells. For this purpose we
use the forall rule of AsmGofer.

gameOfLife:: Rule ()
gameOfLife =
forall cell < cells do
let n = aliveNeighbors cell
letDie cell n
letLive cell n

These definitions are sufficient for the dynamic behavior of the game. We
can use the command line to validate our specification. For instance, consider
following scenario:

? status (2,3)

Dead

(66 reductions, 175 cells)

? firel gameOfLife

0 steps

(126277 reductions, 259144 cells, 2 garbage collections)
? status (2,3)

Dead

(66 reductions, 175 cells)

? firel (do status (2,3) := Alive; status (3,4) := Alive)
1 steps

(131 reductions, 352 cells)

? status (2,3)

Alive

(66 reductions, 176 cells)

? assocs status

[((0,0),Dead), ((0,1),Dead), ..., ((2,3),Alive),...]

(386 reductions, 2182 cells)
?

AsmGofer reports zero execution steps in the above output for the first firel
expression, because no update was performed.

Obviously, this kind of executing rules and debugging is very time consum-
ing. Fortunately, AsmGofer extends TkGofer whose features can be used to
define graphical user interfaces as we will describe in the next two sections.

5 Automatic GUI generation

A useful feature of AsmGofer is the automatic generation of a GUIL. Obviously,
the generated GUI is independant of the application domain, but it can be used
to debug and validate a specification at early stages.

The GUI generator is written in AsmGofer itself and reads some configu-
ration information from a file called gui.config which must be located in the
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Figure 3 Configuration for Game of Life
QFUNS

status

O@TERMS

status (2,3)

ORULES

gameOfLife

initField

©@CONDS

False

QFILES

output guiMain.gs
OGUI

main gmain

title Game of Life
@DEFAULT

history

update

current working directory. The configuration file provides information about
dynamic functions to display, expressions to display, rules the user may select in
the GUI to execute, and some conditions for iterative execution of rules. With
this information, the generator creates a new file containing the corresponding
GUI definitions.

Figure 3 shows a configuration file for our example. The file is divided
into several sections which we are now going to explain. Section FUNS contains
dynamic function names which should be displayed in the GUI. Additionally
the GUI displays expressions which are defined in the TERMS section. In our
case we display only the expression status (2,3). The GUI generator creates a
list box where the user can select a rule to execute. All names in the RULES
section are listed in that box. Obviously these names must be of type Rule ().
We add the following rule initField to our definitions for the game to initialize
the matrix.

initField :: Rule ()
initField = do
forall ¢ < cells do
if ¢ € init then
status ¢ := Alive
else
status ¢ := Dead
where init = [(3,4), (4,4), (5,4), (4,3), (5,5)]

Selected rules in the list box can be executed step by step and while or until
a certain condition holds. The conditions which can be selected are defined in
the CONDS section. All expressions in this section must be of type Bool.
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Figure 4 Generated GUI for Game of Life
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The output entry in the section FILES denotes the file in which the generator
should create the corresponding GUI definitions. Additionally, the main and
title entries define the function name to start the resulting GUI and the title
for the main window, respectively. In our case we can run the generated GUI
with the function gmain.

In the DEFAULT section we can specify whether we want a history for the
execution steps to move forward and backwards and whether the GUI should
be updated during execution of a rule while or until a condition holds.

With the configuration file in Fig. 3 we can type genGUI in the unix shell.
This command calls the GUI generator, reads the information in the config-
uration file and writes the file guiMain.gs. If the file game.gs contains the
AsmGofer definitions introduced in the previous chapter, then we define the
following project file game.p for Gofer.

game.gs
guiMain.gs

We now load this project file by typing :p game.p in the Gofer command
line. The expression gmain starts the generated GUI and the main window in
Fig. 4 appears. Clicking on the rules button displays the list box containing the
rules specified in the RULES section of the configuration file. The same applies
for the box displaying the conditions. Figure 5 shows both windows. Note that
the condition True is always present.

The content of dynamic functions is displayed in the main window. Double
clicking on such a dynamic function opens a new window which displays only
the values for that dynamic function. Figure 5 also shows this window for the
dynamic function status.

The quit button in Fig. 4 is self explaining. Pressing the run button executes
the rule selected in the rule window while or until the selected condition in the
condition window holds. If the check button show updates is enabled, then the
GUI will be updated in each step during iterative execution with run; otherwise
only after the iterative execution.

If the history button is enabled, then AsmGofer stores the complete history
of execution steps. The buttons + and - move backwards and forwards in the
history. Finally, the fire button executes one step of the selected rule.
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Figure 5 Rule and condition window, Dynamic function status
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6 User defined GUI

This section describes how to fire rules from a GUI. For this reason, we define a
graphical user interface for Conway’s Game of Life using the features of TkGofer.
Since this section does not introduce TkGofer (for an introduction see [15]), the
reader should have basic knowledge of TkGofer.

As already mentioned, the function firel transforms a rule into an IO action
and is of type Rule () — IO (). On the other hand, TkGofer provides a function
liftIO transforming an 10 action into a GUI action. This implies that the
following definition for oneStep is a GUI action which first executes one step
of the rule gameOfLife and then updates each field in the list fields containing
pairs of buttons and cells. GUI actions are always executed sequentially from
top to bottom (see [15] for more information).

oneStep :: Fields — GUI ()
oneStep(fields) = do
LiftIO (firel gameOfLife)
seqs [cset f (background(color ¢)) | (f, c) < fields]

type Field = (Button, Cell)
type Fields = [Field]

We are now going to define the remaining functions for the GUI (see Fig. 6)
and we start with a function yielding a color to represent a cell depending on
its status.

color:: Cell — String
color cell = if status cell == Dead then "lightgrey" else "red"

Since we do not want to initialize the dynamic function status by entering
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Figure 6 Graphical user interface
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commands on the command line we define each field in the matrix in Fig. 6
in such a way, that the status of the corresponding cell toggles whenever we
click on the field. Therefore we define a toggle action similarly to the oneStep
action above. It first switches the status for the given cell and then updates the
background color of the corresponding button in the GUI.

toggle :: Field — GUI ()
toggle(b, cell) = do
LiftIO (firel(if status cell == Dead then
status cell := Alive
else
status cell := Dead))
cset b (background(color cell))

A Gofer program is usually started by a function called main. Hence we
define main as creating the main window and the elements as shown in Fig. 6.
All functions used in this definition are already introduced or described in [15]
except controlWindow.

main: 10 ()
main = start $ do
w  «— window [title "Game of Life"]
q — button [text "quit" , command quit] w
bfire — button [text "fire" | w
fields «— binds [button|[background(color c¢), font "courier" | w
| ¢« cells]
let fields' = zip fields cells
seqs [cset f (command(toggle(f, c))) | (f, c) « fields']
cset bfire (command(oneStep fields'))
pack (matriz cN fields ~~ fillX bfire ~~ fillX q)
controlWindow(fields")
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Figure 7 Control execution
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The function controlWindow creates an additional window (see Fig. 7) to control
the execution. This window contains a run button to start automatic execution
(iterative execution of oneStep) and a cancel button to stop it.

controlWindow :: Fields — GUI ()
controlWindow(fields) = do
w « window [title "speed control"]
t  « timer [init Value 1000, active False, command(oneStep(fields))]
be « button [text "cancel" , active False] w
br — button [text "run" | w
s <« hscale [scaleRange (0,3000), tickInterval 1000,
text "delay in ms", height 200, init Value 1000] w
pack (flexible(flexible s~ ~be << br))
cset s (command(do v «— getValue s; setValue t v))
cset br (command(animation(t, s, be, br)))
cset be (command(do cset t (active False)
cset br (active True)
cset be (active False)))

The definition creates a new window with a timer object, two buttons cancel
and run, and a scaler. Whenever the timer expires, the oneStep action is exe-
cuted. In our definition, the timer expires every second (assuming the timer is
active).

When clicking on the run button, the action animation is executed which
disables the run button, enables the cancel button, and activates the timer.
This implies that then oneStep is executed every second.

animation:: (Timer, Scale, Button, Button) — GUI ()
animation(t, s, be, br) = do
cset br (active False)
cset be (active True
csett (active True

~— —

Loading the source code (downloadable at [12]) in AsmGofer and typing
main starts the GUI. We can initialize the dynamic function status by clicking
on the corresponding fields to establish the glider pattern as shown in Fig. 6.
The fire button in the main window executes one step of the gameOfLife rule.
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On the other hand, the run button in the control window execues gameOfLife
iteratively. Pressing the quit button terminates the GUI and the interpreter is
ready for further commands.

7 Summary

AsmGofer is a tool which can be used for a wide spectrum of applications. Since
it is an interpreter, it is usually too slow for performance critical applications,
but it is rather suitable for building prototypes. AsmGofer is supported by
other tools. Since Gofer is similar to Haskell, for instance, the lexer and parser
tools for Haskell can be used for Gofer, too.

AsmGofer is a conservative extension of TkGofer and Gofer. This implies
that all features of Gofer and TkGofer can be used in AsmGofer. In particular,
TkGofer allows to rapidly build graphical user interfaces to control the ASM
definitions.

AsmGofer has been used successfully for instance for the ASM models in Java
and the Java Virtual Machine [13] where the static and dynamic semantics of
Java are defined in AsmGofer. This includes parsing and type checking of Java
programs as well as a GUI which shows the evaluation of a Java program step
by step.

Acknowledgments. We thank Egon Boérger, Vincenzo Gervasi, and Peter
Pappinghaus for many comments on this introduction.
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